# 《高性能SQL引擎》SQL引擎实战-第02节:基于通用模板动态生成SQL
作者:冰河
星球:http://m6z.cn/6aeFbs (opens new window)
博客:https://binghe.gitcode.host (opens new window)
文章汇总:https://binghe.gitcode.host/md/all/all.html (opens new window)
源码获取地址:https://t.zsxq.com/0dhvFs5oR (opens new window)
沉淀,成长,突破,帮助他人,成就自我。
- 本节难度:★★☆☆☆
- 本节重点:基于通用模板动态生成SQL,从全局视角了解高性能SQL引擎的设计和架构思想,并能够将其灵活应用到自身实际项目中。
大家好,我是冰河~~
高性能SQL引擎最基础和最核心的功能就是通过JSON模板或者直接创建对象组合动态生成SQL,不再依赖各种实体模型来接收和传递数据。高性能SQL引擎自身会设计和实现通用的数据模型。这些通用的数据模型会由专门的SQL构建器将其转化成最终的SQL语句。同时,在高性能SQL引擎中,我们设计和实现了SQL驱动引擎来驱动SQL构建器的执行。
高性能SQL可根据实际需要生成任意SQL,限于篇幅,已经给大家分享了基于高性能SQL引擎的通用模型生成十种典型案例场景的SQL。
# 一、背景
截止到目前,我们已经设计和实现了高性能SQL引擎的核心功能,包括:梳理了高性能SQL引擎的需求和流程、制定了高性能SQL引擎的方案目标和架构设计、制定了通用化落地方案、设计和实现通用数据模板和数据模型、设计和实现SQL构建器和驱动引擎等。
在SQL引擎实战篇章,我们已经基于高性能SQL引擎的通用模型动态生成SQL。接下来,基于高性能SQL引擎的通用模板动态生成SQL。
# 二、本节诉求
基于通用模板动态生成SQL,从全局视角了解高性能SQL引擎的设计和架构思想,并能够将其灵活应用到自身实际项目中。
# 三、实战案例
高性能SQL引擎可以根据实际需要生成任意SQL语句。本节,主要基于高性能SQL引擎的通用模板动态生成十种典型的SQL语句。各位小伙伴可以根据自身实际需要,生成任意自己想要的SQL语句。
案例一:普通查询
查询用户表中用户id为1的用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "=",
"fieldValue": "1"
}]
}
2
3
4
5
6
7
8
9
10
11
12
13
生成的SQL语句如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_id = 1
2
3
4
5
6
7
8
9
10
案例二:in查询
查询用户表中用户id在1,2,3,4中的用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "in",
"fieldValue": "1,2,3,4"
}]
}
2
3
4
5
6
7
8
9
10
11
12
13
生成的SQL语句如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_id IN ( 1, 2, 3, 4 )
2
3
4
5
6
7
8
9
10
案例三:like查询
查询用户表中名字包含小的用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_name",
"aboveConditions": "and",
"middleConditions": "like",
"fieldValue": "'%小%'"
}]
}
2
3
4
5
6
7
8
9
10
11
12
13
生成的SQL如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_name LIKE '%小%'
2
3
4
5
6
7
8
9
10
案例四:between-and查询
查询用户表中用户id在1~100之间的用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "between",
"fieldValue": "1,100"
}]
}
2
3
4
5
6
7
8
9
10
11
12
13
生成的SQL如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_id BETWEEN 1
AND 100
2
3
4
5
6
7
8
9
10
11
案例五:分页查询
分页查询用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "between",
"fieldValue": "1,100"
}],
"limit": {
"pageStart": 0,
"pageSize": 10,
"databaseType": 0
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
生成的SQL语句如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_id BETWEEN 1
AND 100
LIMIT 0,
10
2
3
4
5
6
7
8
9
10
11
12
13
案例六:降序查询
降序查询用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "between",
"fieldValue": "1,100"
}],
"orderBy": [{
"fields": ["user_id"],
"sort": "desc"
}]
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
生成的SQL语句如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_id BETWEEN 1
AND 100
ORDER BY
user_id DESC
2
3
4
5
6
7
8
9
10
11
12
13
案例七:多组排序查询
对用户进行多组排序查询,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["user_id", "user_name", "address", "sex", "remark"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "between",
"fieldValue": "1,100"
}],
"orderBy": [{
"fields": ["user_id", "user_type"],
"sort": "desc"
}, {
"fields": ["province_id", "country_id"],
"sort": "asc"
}]
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
生成的SQL语句如下所示。
SELECT
user_id,
user_name,
address,
sex,
remark
FROM
t_user AS USER
WHERE
user_id BETWEEN 1
AND 100
ORDER BY
user_id,
user_type DESC,
province_id,
country_id ASC
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
案例八:分组聚合查询
分组聚合查询用户信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"fields": ["province_id", "user_type"],
"aggregation": [{
"field": "user_id",
"aggregationMode": "DISTINCT_COUNT",
"alias": "userCount"
}, {
"field": "amount",
"aggregationMode": "SUM",
"alias": "totalAmount"
}],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "between",
"fieldValue": "1,100"
}],
"groupBy": ["province_id", "user_type"]
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
生成的SQL语句如下所示。
SELECT
province_id,
user_type,
count( DISTINCT user_id ) AS userCount,
sum( amount ) AS totalAmount
FROM
t_user AS USER
WHERE
user_id BETWEEN 1
AND 100
GROUP BY
province_id,
user_type
2
3
4
5
6
7
8
9
10
11
12
13
案例九:子查询
通过子查询统计用户的相关信息,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "t_user",
"alias": "user"
},
"joins": [{
"joinType": "QUERY_SUBSYSTEM",
"table": {
"tableName": "t_user",
"alias": "sub_user"
},
"fields": ["user_id", "amount", "province_id", "user_type"],
"condition": [{
"field": "user_id",
"aboveConditions": "and",
"middleConditions": "between",
"fieldValue": "1,100"
}]
}],
"fields": ["province_id", "user_type"],
"aggregation": [{
"field": "user_id",
"aggregationMode": "DISTINCT_COUNT",
"alias": "userCount"
}, {
"field": "amount",
"aggregationMode": "SUM",
"alias": "totalAmount"
}],
"groupBy": ["province_id", "user_type"]
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
生成的SQL如下所示。
SELECT
province_id,
user_type,
count( DISTINCT user_id ) AS userCount,
sum( amount ) AS totalAmount
FROM
( SELECT user_id, amount, province_id, user_type FROM t_user AS sub_user WHERE user_id BETWEEN 1 AND 100 ) AS sub_user
GROUP BY
province_id,
user_type
2
3
4
5
6
7
8
9
10
案例十:关联查询
对用户分析表和支付分析表进行关联分析查询,构造出的高性能SQL引擎的查询数据模板如下所示。
{
"table": {
"tableName": "user_analysis",
"alias": "user_analysis"
},
"joins": [{
"joinType": "QUERY_SUBSYSTEM",
"table": {
"tableName": "user_analysis",
"alias": "user_analysis"
},
"fields": ["analysis_date", "analysis_type", "platform_id"],
"aggregation": [{
"field": "register_count",
"aggregationMode": "SUM",
"alias": "register_count"
}, {
"field": "login_count",
"aggregationMode": "SUM",
"alias": "login_count"
}],
"condition": [{
"field": "analysis_date",
"aboveConditions": "and",
"middleConditions": ">=",
"fieldValue": "2000-01-01"
}],
"groupBy": ["analysis_date", "analysis_type", "platform_id"]
}, {
"joinType": "LEFT",
"table": {
"tableName": "pay_analysis",
"alias": "pay_analysis"
},
"fields": ["analysis_date", "analysis_type", "platform_id"],
"aggregation": [{
"field": "pay_count",
"aggregationMode": "SUM",
"alias": "pay_count"
}, {
"field": "change_count",
"aggregationMode": "SUM",
"alias": "change_count"
}],
"condition": [{
"field": "analysis_date",
"aboveConditions": "and",
"middleConditions": ">=",
"fieldValue": "2000-01-01"
}],
"joinCondition": [{
"field": "user_analysis.analysis_date",
"aboveConditions": "and",
"middleConditions": "=",
"fieldValue": "pay_analysis.analysis_date"
}, {
"field": "user_analysis.analysis_type",
"aboveConditions": "and",
"middleConditions": "=",
"fieldValue": "pay_analysis.analysis_type"
}, {
"field": "user_analysis.platform_id",
"aboveConditions": "and",
"middleConditions": "=",
"fieldValue": "pay_analysis.platform_id"
}],
"groupBy": ["analysis_date", "analysis_type", "platform_id"]
}],
"fields": ["user_analysis.analysis_date", "user_analysis.analysis_type", "user_analysis.platform_id", "pay_analysis.analysis_date", "pay_analysis.analysis_type", "pay_analysis.platform_id"],
"aggregation": [{
"field": "register_count",
"aggregationMode": "SUM",
"alias": "registerCount"
}, {
"field": "login_count",
"aggregationMode": "SUM",
"alias": "loginCount"
}, {
"field": "pay_count",
"aggregationMode": "SUM",
"alias": "payCount"
}, {
"field": "change_count",
"aggregationMode": "SUM",
"alias": "changeCount"
}],
"groupBy": ["user_analysis.analysis_date", "user_analysis.analysis_type", "user_analysis.platform_id", "pay_analysis.analysis_date", "pay_analysis.analysis_type", "pay_analysis.platform_id"]
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
生成的SQL语句如下所示。
SELECT
user_analysis.analysis_date,
user_analysis.analysis_type,
user_analysis.platform_id,
pay_analysis.analysis_date,
pay_analysis.analysis_type,
pay_analysis.platform_id,
sum( register_count ) AS registerCount,
sum( login_count ) AS loginCount,
sum( pay_count ) AS payCount,
sum( change_count ) AS changeCount
FROM
(
SELECT
analysis_date,
analysis_type,
platform_id,
sum( register_count ) AS register_count,
sum( login_count ) AS login_count
FROM
user_analysis AS user_analysis
WHERE
analysis_date >= '2000-01-01'
GROUP BY
analysis_date,
analysis_type,
platform_id
) AS user_analysis
LEFT JOIN (
SELECT
analysis_date,
analysis_type,
platform_id,
sum( pay_count ) AS pay_count,
sum( change_count ) AS change_count
FROM
pay_analysis AS pay_analysis
WHERE
analysis_date >= '2000-01-01'
GROUP BY
analysis_date,
analysis_type,
platform_id
) AS pay_analysis ON user_analysis.analysis_date = pay_analysis.analysis_date
AND user_analysis.analysis_type = pay_analysis.analysis_type
AND user_analysis.platform_id = pay_analysis.platform_id
GROUP BY
user_analysis.analysis_date,
user_analysis.analysis_type,
user_analysis.platform_id,
pay_analysis.analysis_date,
pay_analysis.analysis_type,
pay_analysis.platform_id
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# 四、本节总结
本节,主要对高性能SQL引擎基于通用模板动态生成SQL给出了十种典型的案例场景,高性能SQL引擎可以按需生成各种想要的SQL语句。
最后,可以在评论区写下你学完本章节的收获,祝大家都能学有所成,我们一起搞定高性能SQL引擎。
# 五、写在最后
在冰河的知识星球除了已完结的高性能网关和热更的RPC视频外,还有其他众多高并发、高性能中间件与业务场景项目,像DeepSeek大模型、手写高性能熔断组件、手写通用指标上报组件、手写高性能数据库路由组件、分布式IM即时通讯系统、Sekill分布式秒杀系统、手写RPC、简易商城系统等等,这些项目的需求、方案、架构、落地等均来自互联网真实业务场景,让你真正学到互联网大厂的业务与技术落地方案,并将其有效转化为自己的知识储备。
值得一提的是:冰河自研的Polaris高性能网关比某些开源网关项目性能更高,并且冰河也正在为企业级高性能RPC框架录制视频,全程带你分析原理和手撸代码。 你还在等啥?不少小伙伴经过星球硬核技术和项目的历练,早已成功跳槽加薪,实现薪资翻倍,而你,还在原地踏步,抱怨大环境不好。抛弃焦虑和抱怨,我们一起塌下心来沉淀硬核技术和项目,让自己的薪资更上一层楼。

目前,领券加入星球就可以跟冰河一起学习《DeepSeek大模型》、《手写高性能通用熔断组件项目》、《手写高性能通用监控指标上报组件》、《手写高性能数据库路由组件项目》、《手写简易商城脚手架项目》、《手写高性能RPC项目》和《Spring6核心技术与源码解析》、《实战高并发设计模式》、《分布式Seckill秒杀系统》、《分布式IM即时通讯系统》和《手写高性能Polaris网关》,从零开始介绍原理、设计架构、手撸代码。
花很少的钱就能学这么多硬核技术、中间件项目和大厂秒杀系统与分布式IM即时通讯系统,比其他培训机构不知便宜多少倍,硬核多少倍,如果是我,我会买他个十年!
加入要趁早,后续还会随着项目和加入的人数涨价,而且只会涨,不会降,先加入的小伙伴就是赚到。
另外,还有一个限时福利,邀请一个小伙伴加入,冰河就会给一笔 分享有奖 ,有些小伙伴都邀请了50+人,早就回本了!
# 六、其他方式加入星球
- 链接 :打开链接 http://m6z.cn/6aeFbs 加入星球。
- 回复 :在公众号 冰河技术 回复 星球 领取优惠券加入星球。
特别提醒: 苹果用户进圈或续费,请加微信 hacker_binghe 扫二维码,或者去公众号 冰河技术 回复 星球 扫二维码加入星球。
**好了,今天就到这儿吧,我是冰河,我们下期见~~